

Re	g. No:												
	SIDDH		H INS	TITU	TE O	F EN	GINE	ERIN	G & [ГЕСН	INOL	OGY:: PUTTUR	
(AUTONOMOUS)													
B.Tech II Year II Semester Regular Examinations October-2020													
I HEKIVIOD I INAIVIIOS (Mechanical Engineering)													
Time: 3 hours Max. Marks: 60													
	PART-A												
(Answer all the Questions $5 \times 2 = 10$ Marks)													
1	a Explain the term "System".										2M		
	b Define	the te	erm En	tropy.									2M
	c What is Boltzmann constant?											2M	
	d What are cyclic and non-cyclic heat engine?												2M
	e Define the term availability.												2M
PART-B													
	(Answer all Five Units 5 x $10 = 50$ Marks)												
							UNI	T-I					
2	a What c inexac	lo you t diffe:	under rential	stand	by pat	h func	ction a	ind po	int fur	nction	? Wha	t are the exact and	5M
	b Show t	hat w	ork is a	a path	functi	on and	d not a	n prope	erty.				5M
							O	R					
3	a Classif	y the	differe	nces b	etwee	n heat	and v	vork tr	ansfei	rs.			5M
	b Explain	n abou	it Heat	transf	fer.								5M
	UNIT-II												
4	a Explai	in zero	oth law	of the	ermod	ynami	cs.						5M
	b Define	e Heat	, Temp	peratur	e and	conce	pt of t	herma	l Equ	ilibriu	m.		5M
							O	R					
5	a Define system	e first 1.	law of	thern	nodyna	amics.	Justi	fy that	inter	nal en	ergy i	s a property of the	5M
	b A Stat	ionary	/ mass	of ga	s is co	ompres	ssed v	vithout	t fricti	on fro	om an	initial state of 0.3	5M
	m^3 and	d 0.10	5 Mpa	to a f	inal st	ate of	0.15 1	n ³ and	0.10	5 Mpa	, the p	pressure remaining	
	consta	nt du	ring th	e pro	cess. '	There	is a t	ransfe	r of 3	37.6 K	J of	heat from the gas	
	during	the p	rocess	. How	much	does	the int	ernal	energy	of the	e gas	change?	
	UNIT-III												
6	a State a	nd Ex	plain I	Dalton	law o	f parti	al pre	ssure.					5M
	b How the	ne part	ial pre	ssure	in gas	mixtu	re rela	ated to	mole	fracti	on?		5M
OR													
7	A cylinde	er con	tains a	0.45n	n ³ of g	gas at	1×10^{5}	N/m ²	and 8	0 ⁰ С. Т	The ga	s is compressed to	10M
	volume o	of 0.13	m ³ th	e final	press	ure be	ing 5x	10° N	$/m^2 D$	etermi	ine:		
	i) The m internal o	nass o energy	fgas oftł	ii) the ne gas	e valu . iv)	e of i The h	ndex leat re	'n' fo eceived	r com d or 1	ipressi ejecte	ion iii d by) The increase in the gas during the	
	compressi	ion. 1a	ke γ=1	. 4 , K=.	274.2 J	/kg U.							

UNIT-IV

8	a Develop an expression for Carnot Cycle and efficiency of cycle.					
	b A carnot engine working between 400° C and 40° C produce 130 KJ of work.					
	Determine: i) The thermal efficiency. ii) the heat added iii) The entropy changes					
	during the heat rejection process.					
	OR					
9	Develop the expression for air standard efficiency, work done of an otto cycle.	10M				
	UNIT-V					
10	a Classify Boilers.	5 M				
	b Give the comparison between fire tube and water tube boilers.	5 M				
	OR					
11	Explain with neat sketches of the following boiler mountings	10M				
	i) Water level Indicator ii) pressure gauge					

END